Senin, 24 Juni 2013

TUGAS : Tampilan User Interface (Etika & Profesionalisme TSI #)

Tugas Etika & Profesionalisme TSI #
Nama : Ning Sabar Mawarni
Kelas : 4Ka 23
Npm : 15109970 


Sabtu, 22 Juni 2013

Jelaskan dan gambarkan stuktur storage, sistem multitasking, struktur unit programming, sistem konputasi batch





Penulisan
Ning Sabar Mawarni
15109970
Soal : Jelaskan dan gambarkan stuktur storage, sistem multitasking, struktur unit programming, sistem konputasi batch
I. Struktur Storage
  • Main memory :
1. Media penyimpanan, dimana CPU dapat melakukan akses secara langsung
  • Secondary storage :
2. Tambahan dari main memory yang memiliki kapasitas besar dan bersifat nonvolatile
  • Magnetic disks
1. Metal keras atau piringan yang terbungkus material magnetik
2. Permukaan disk terbagi secara logikal dalam track, yang masing-masing terbagi lagi dalam sector
3. Disk controller menentukan interaksi logikal antara device dan komputer



Hirarki Storage
1. Hirarki sistem storage, diorganisasikan dalam bentuk :
·        Kecepatan
·        Biaya
·        Volatilitas
2. Caching
·        Penduplikasian informasi ke dalam sistem storage yang cepat dapat dilakukan melalui cache pada secondary storage
II. Multitasking
Multitasking adalah pemrosesan beberapa tugas pada waktu yang bersamaan. Sebagai contoh, jika seseorang sedang menyetir, bertelepon lewat ponsel, dan sambil merokok secara bersamaan, maka orang tersebut melakukan multitasking.

Multitasking merupakan mekanisme kerja komputer. CPU komputer dapat menangani beberapa proses dalam waktu yang sama secara akurat. Proses yang dikerjakan tergantung pada instruksi yang diberikan oleh software komputer. Oleh sebab itu, untuk memanfaatkan kemampuan CPU secara maksimal, software yang digunakan juga harus memiliki kemampuan multitasking. Saat ini, berbagai software sistem operasi sudah memiliki kemampuan multitasking.
III. Sistem Unit Programming
kegiatan menjalankan beberapa program pada memori pada satu waktu. Di dalam sistem, sebuah program dijalankan dalam CPU sampai terjadi suatu interupsi seperti permintaan masukan. Pada saat program meminta masukan, program berikutnya yang telah di muat dalam memory akan di jalankan sampai terjadi interupsi. Ketika pemrosesan interupsi telah berakhir, kontrol dikembalikkan ke program yang telah diinterupsi. Siklus seperti ini diulang sehingga program-program yang telah dimuat memory utama akan diproses secara bergantian.
     


IV. Sistem Konputasi Batch
Sistem batch,
1. program-program pengguna ditampung bersama-sama (secara offline) dengan pengguna lainnya dan kemudian diserahkan ke sistem operasi oleh operator komputer.
2. program diselesaikan, hasilnya dicetak dan dikembalikan ke pengguna.
3. sistem batch murni sudah jarang ditemukan saat ini.

Sumber :



SHELL, BATCH, KONSUL, dan KERNEL

Ning Sabar Mawarni

15109970

4ka23

SHELL
Shell adalah “command executive” artinya program yang menunggu instruksi user, memeriksa sintaks dan menterjemahkan instruksi yang diberikan kemudian mengeksekusinya. Pada umumnya shell ditandai dengan command prompt, di Linux untuk user biasa biasanya ditandai dengan tanda $ dan untuk superuser biasanya tanda #. shell ada bermacam- macam di kinux biasanya digunakan bash.Di linux ada berbagai macam shell, berikut macam-macam shell :

a. Bourne Shell (sh)

sh adalah shell standar Unix yang dibuat tahun 1979 oleh Stephen Bourne dari AT&T dengan memakai bahasa pemrograman Algol. sh terkenal karena sederhana, compact, and cepat. Kelemahannya adalah kurang interkatif seperti tidak ada history, aliasing, dan job control. Default prompt shell sh adalah $ (dolar).


b. C shell (csh)

csh memiliki feature yang lebih lengkap dibandingkan sh. Shel ini dibuat tahun 1970an oleh Bill Joy dari University of California at Berkeley dengan menggunakan bahasa C. Fitur yang terdapat dalam csh antara lain command-line history, aliasing, built-in arithmetic, filename completion, dan job control. Kelemahnnya adalah karena didesain untuk mesin skala besar dan memiliki banyak fitur maka shel ini cenderung lambat bila digunakan pada mesin kecil. Default prompt shell csh adalah % (persen).

c. Korn Shell (ksh)
Korn shell merupakan pengembangan dari bourne shell yang ditulis oleh David Korn dari AT&T pada pertengahan 1980an. Feature Korn shell antara lain editable history, aliases, functions, regular expression wildcards, built-in arithmetic, job control, coprocessing, dan special debugging. Default prompt shell ksh adalah $ (dolar).

d. Bourne Again Shell(bash)

Bash merupakan default shell Linux yang merupakan pengembangan dari bourne shell sehingga kompatibel juga di Unix. Shell ini dibuat pada tahun 1988 oleh Brian Fox dari FSF GNU. Fitur yang dimiliki bash antara lain interaktif, dapat membuat shortcut, bisa berwarna, dll.Default Bash prompt adalah $ (dolar).

BATCH
Batch Processing adalah suatu model pengolahan data, dengan menghimpun data terlebih dahulu, dan diatur pengelompokkan datanya dalam kelompok-kelompok yang disebut batch. Tiap batch ditandai dengan identitas tertentu, serta informasi mengenai data-data yang terdapat dalam batch tersebut. Setelah data-data tersebut terkumpul dalam jumlah tertentu, data-data tersebut akan langsung diproses.

Contoh dari penggunaan batch processing adalah e-mail dan transaksi batch processing. Dalam suatu sistem batch processing, transaksi secara individual dientri melalui peralatan terminal, dilakukan validasi tertentu, dan ditambahkan ke transaction file yang berisi transaksi lain, dan kemudian dientri ke dalam sistem secara periodik. Di waktu kemudian, selama siklus pengolahan berikutnya, transaction file dapat divalidasi lebih lanjut dan kemudian digunakan untuk meng-up date master file yang berkaitan.


KONSOL
Istilah yang digunakan untuk sebuah mesin system yang dirancang khusus untuk memainkan video game dengan disertai minimal dua stik game untuk memainkanya dan beberpa alat pendukung lainnya. Contoh konsol game yang populer saat ini adalah Sony Playstation, Nintendo Wii, Microsoft X-BOX, dan Sega Dreamcast.


Pengertian Tentang Kernel

Kernel adalah suatu perangkat lunak yang menjadi bagian utama dari sebuah sistem operasi. Tugasnya melayani bermacam program aplikasi untuk mengakses perangkat keras komputer secara aman.

Karena akses terhadap perangkat keras terbatas, sedangkan ada lebih dari satu program yang harus dilayani dalam waktu yang bersamaan, maka kernel juga bertugas untuk mengatur kapan dan berapa lama suatu program dapat menggunakan satu bagian perangkat keras tersebut. Hal tersebut dinamakan sebagai multiplexing.

Akses kepada perangkat keras secara langsung merupakan masalah yang kompleks, oleh karena itu kernel biasanya mengimplementasikan sekumpulan abstraksi hardware. Abstraksi-abstraksi tersebut merupakan sebuah cara untuk menyembunyikan kompleksitas, dan memungkinkan akses kepada perangkat keras menjadi mudah dan seragam. Sehingga abstraksi pada akhirnya memudahkan pekerjaan programer.

Untuk menjalankan sebuah komputer kita tidak harus menggunakan kernel sistem operasi. Sebuah program dapat saja langsung di- load dan dijalankan diatas mesin 'telanjang' komputer, yaitu bilamana pembuat program ingin melakukan pekerjaannya tanpa bantuan abstraksi perangkat keras atau bantuan sistem operasi. Teknik ini digunakan oleh komputer generasi awal, sehingga bila kita ingin berpindah dari satu program ke program lain, kita harus mereset dan meload kembali program-program tersebut.

Ada 4 kategori kernel:

1. Monolithic kernel. Kernel yang menyediakan abstraksi perangkat keras yang kaya dan tangguh.

2. Microkernel. Kernel yang menyediakan hanya sekumpulan kecil abstraksi perangkat keras sederhana, dan menggunakan aplikasi-aplikasi yang disebut sebagai server untuk menyediakan fungsi-fungsi lainnya.

3. Hybrid (modifikasi dari microkernel). Kernel yang mirip microkernel, tetapi ia juga memasukkan beberapa kode tambahan di kernel agar ia menjadi lebih cepat.

4. Exokernel. Kernel yang tidak menyediakan sama sekali abstraksi hardware, tapi ia menyediakan sekumpulan pustaka yang menyediakan fungsi-fungsi akses ke perangkat keras secara langsung atau hampir-hampir langsung.

Dari keempat kategori kernel yang disebutkan diatas, kernel Linux termasuk kategori monolithic kernel. Kernel Linux berbeda dengan sistem Linux. Kernel Linux merupakan sebuah perangkat lunak orisinil yang dibuat oleh komunitas Linux, sedangkan sistem Linux, yang dikenal saat ini, mengandung banyak komponen yang dibuat sendiri atau dipinjam dari proyek pengembangan lain.

Kernel Linux pertama yang dipublikasikan adalah versi 0.01, pada tanggal 14 Maret 1991. Sistem berkas yang didukung hanya sistem berkas Minix. Kernel pertama dibuat berdasarkan kerangka Minix (sistem UNIX kecil yang dikembangkan oleh Andy Tanenbaum). Tetapi, kernel tersebut sudah mengimplementasi proses UNIX secara tepat.

Pada tanggal 14 Maret 1994 dirilis versi 1.0, yang merupakan tonggak sejarah Linux. Versi ini adalah kulminasi dari tiga tahun perkembangan yang cepat dari kernel Linux. Fitur baru terbesar yang disediakan adalah jaringan. Versi 1.0 mampu mendukung protokol standar jaringan TCP/IP. Kernel 1.0 juga memiliki sistem berkas yang lebih baik tanpa batasan-batasan sistem berkas Minix. Sejumlah dukungan perangkat keras ekstra juga dimasukkan ke dalam rilis ini. Dukungan perangkat keras telah berkembang termasuk diantaranya floppy-disk, CD-ROM, sound card, berbagai mouse, dan keyboard internasional. Dukungan juga diberikan terhadap modul kernel yang loadable dan unloadable secara dinamis.

Satu tahun kemudian dirilis kernel versi 1.2. Kernel ini mendukung variasi perangkat keras yang lebih luas. Pengembang telah memperbaharui networking stack untuk menyediakan support bagi protokol IPX, dan membuat implementasi IP lebih lengkap dengan memberikan fungsi accounting dan firewalling. Kernel 1.2 ini merupakan kernel Linux terakhir yang PC-only. Konsentrasi lebih diberikan pada dukungan perangkat keras dan memperbanyak implementasi lengkap pada fungsi-fungsi yang ada.

Pada bulan Juni 1996, kernel Linux 2.0 dirilis. Versi ini memiliki dua kemampuan baru yang penting, yaitu dukungan terhadap multiple architecture dan multiprocessor architectures. Kode untuk manajemen memori telah diperbaiki sehingga kinerja sistem berkas dan memori virtual meningkat. Untuk pertama kalinya, file system caching dikembangkan ke networked file systems, juga sudah didukung writable memory mapped regions. Kernel 2.0 sudah memberikan kinerja TCP/IP yang lebih baik, ditambah dengan sejumlah protokol jaringan baru. Kemampuan untuk memakai remote netware dan SMB (Microsoft LanManager) network volumes juga telah ditambahkan pada versi terbaru ini. Tambahan lain adalah dukungan internal kernel threads, penanganan dependencies antara modul-modul loadable, dan loading otomatis modul berdasarkan permintaan (on demand). Konfigurasi dinamis dari kernel pada run time telah diperbaiki melalui konfigurasi interface yang baru dan standar.

Semenjak Desember 2003, telah diluncurkan Kernel versi 2.6, yang dewasa ini (2008) telah mencapai patch versi 2.6.26.1 ( http://kambing.ui.edu/kernel-linux/v2.6/). Hal-hal yang berubah dari versi 2.6 ini ialah:

* Subitem M/K yang dipercanggih.

* Kernel yang pre-emptif.

* Penjadwalan Proses yang dipercanggih.

* Threading yang dipercanggih.

* Implementasi ALSA (Advanced Linux Sound Architecture) dalam kernel.

* Dukungan sistem berkas seperti: ext2, ext3, reiserfs, adfs, amiga ffs, apple macintosh hfs, cramfs, jfs, iso9660, minix, msdos, bfs, free vxfs, os/2 hpfs, qnx4fs, romfs, sysvfs, udf, ufs, vfat, xfs, BeOS befs (ro), ntfs (ro), efs (ro).

Sumber:
http://beckellroom.blogspot.com/2009/01/pengertian-tentang-kernel-kernel-adalah.html
http://ahmadfaza.com/macam-macam-shell-dan-pengertiannya.html
http://cyrillusdodi.blogspot.com/2011/11/pengertian-batch-processing.html
http://tentang-pengertian.blogspot.com/2009/02/komputer-tentang-pengertian-konsol.html

SINGLE dan DOUBLE PRECISION

Ning Sabar Mawarni

15109970

4ka23

SINGLE dan DOUBLE PRECISION

jelaskan pengertian single precision dan double precision
Format tunggal-presisi floating-point format angka komputer yang menempati 4 byte (32 bit) dalam memori komputer dan merupakan dynamic range yang lebar dari nilai-nilai dengan menggunakan floating point.

Dalam IEEE 754-2008 basis 2 format 32-bit secara resmi disebut sebagai binary32. Itu disebut tunggal dalam IEEE 754-1985. Pada komputer lama, format floating-point lain dari 4 byte yang digunakan.

Salah satu bahasa pemrograman pertama yang menyediakan tipe data tunggal dan double-presisi floating-point adalah Fortran. Sebelum adopsi IEEE 754-1985, representasi dan sifat ganda tipe data float tergantung pada produsen komputer dan model komputer.

Single-presisi biner floating-point digunakan karena jangkauan luas atas titik tetap (yang sama-bit lebar), bahkan jika pada biaya presisi.

Presisi tunggal dikenal sebagai nyata dalam Fortran, [1] sebagai pelampung di C, C + +, C #, Java [2] dan Haskell, dan sebagai single di Delphi (Pascal), Visual Basic, dan MATLAB. Namun, mengambang di Python, Ruby, PHP, dan OCaml dan satu di versi Oktaf sebelum 3.2 merujuk pada nomor presisi ganda. Dalam PostScript hanya presisi floating-point tunggal.
Dalam contoh ini:

\ text {} tanda = 0
1 + \ sum_ {i = 1} ^ {23} b_ {23}-i 2 ^ {-i} = 1 + 2 ^ {-2} = 1,25
2 ^ {(e-127)} = 2 ^ {} 124-127 = 2 ^ {-3}

demikian:

\ text {value} = 1,25 \ kali 2 ^ {-3} = 0,15625


Dalam komputasi, presisi ganda adalah format nomor komputer yang menempati dua lokasi penyimpanan yang berdekatan dalam memori komputer. Sejumlah presisi ganda, kadang-kadang hanya disebut ganda, dapat didefinisikan sebagai integer, titik tetap, atau floating point (dalam hal ini sering disebut sebagai FP64).

Komputer modern dengan lokasi penyimpanan 32-bit menggunakan dua lokasi memori untuk menyimpan nomor presisi ganda 64-bit (lokasi penyimpanan tunggal dapat menampung sejumlah presisi tunggal). Presisi ganda floating-point merupakan standar IEEE 754 untuk pengkodean biner atau desimal angka floating-point 64 bit (8 byte).
The presisi ganda biner eksponen floating-point dikodekan menggunakan representasi offset-biner, dengan offset nol menjadi 1023, juga dikenal sebagai Bias eksponen dalam standar IEEE 754. Contoh representasi tersebut akan menjadi:

Emin (1) = -1.022
E (50) = -973
Emax (2046) = 1023

Dengan demikian, seperti yang didefinisikan oleh representasi offset-biner, untuk mendapatkan eksponen benar bias eksponen 1023 harus dikurangkan dari eksponen tertulis.

Para eksponen 00016 dan 7ff16 memiliki arti khusus:

00016 digunakan untuk mewakili nol (jika M = 0) dan subnormals (jika M ≠ 0), dan
7ff16 digunakan untuk mewakili ∞ (jika M = 0) dan NaN (jika M ≠ 0),

di mana M adalah mantissa fraksi. Semua pola bit encoding yang valid.

Kecuali untuk pengecualian atas, jumlah presisi ganda seluruh digambarkan oleh:

(-1) ^ {\ Text {tanda}} \ kali 2 ^ {\ text {} eksponen - \ text {eksponen Bias}} \ kali 1 \ text {} mantissa.

Sumber : http://jaquelineanggella.blogspot.com/2013/06/jelaskan-pengertian-single-precision.html

PENGERTIAN DARI AKSES INPUT OUTPUT

Ning  Sabar Mawarni
15109970
4ka23

PENGERTIAN DARI AKSES INPUT OUTPUT

Senin, 13 Mei 2013

Tugas: Jelaskan tata cara / aturan etika komunikasi agar tidak kacau , sehingga mencapai tujuan yang diharapkan

Nama : Ning Sabar Mawarni
Kelas : 4ka23
npm : 15109970
SKEMA DASAR SISTEM KOMPUTER
Pada abstraksi tingkat atas, sistem komputer terdiri atas empat komponen. Keempat komponen itu bekerjasama saling berinteraksi untuk mencapai tujuan sistem komputer, yaitu komputasi. Keempat komponen sistem komputer adalah:
  • 1. pemroses
  • 2. memori utama
  • 3. perangkat masukan/keluaran
  • 4. interkoneksi antar komponen
Pemroses
Pemroses berfungsi mengendalikan operasi komputer dan melakukan fungsi pemrosesan data. Pemroses terdiri dari :
  • · bagian ALU (Aritmetic logic unit) untuk komputasi
  • · bagian CU (Control unit) untuk pengendalian
  • · register-register
Memori utama
Memori berfungsi untuk menyimpan data dan program. Memori utama biasanya volatile, tidak dapat mempertahankan data dan program yang disimpan bila sumber daya energi listrik dihentikan. Saat ini komputer mengikuti konsep program tersimpan von neuman, yaitu program disimpan di suatu tempat (memori) dimana kemudian instruksi-instruksi itu dieksekusi. Sasaran yang akan dicapai komputer sesuai atau bergantung program yang disimpan untuk dieksekusi. Penggunaan komputer dapat disesuaikan hanya dengan mengganti program yang disimpan di memori untuk dieksekusi. Konsep ini menghasilkan keluwesan yang sangat luar biasa.
Perangkat masukan/keluaran
Perangkat masukan/keluaran berfungsi memindahkan data antara komputer dan lingkungan eksternal. Lingkungan eksternal dapat diantarmuka dengan perangkat seperti:
  • · perangkat penyimpanan skunder
  • · perangkat komunikasi
  • · terminal
  • · dan sebagainya
perangkat-perangkat ini berfungsi menghubungkan komputer dengan lingkungan sehinggakomputer bermanfaat bagi lingkunganya.
Interkoneksi antar komponen
Interkoneksi antarkoponen adalah struktur dan mekanisme untuk menghubungkan ketiga komponen( pemroses, memori utama, dan perangkat masukan/keluaran ). Secara fisik interkoneksi antar komponen berupa perkawatan. Interkoneksi tidak hanya perkawatan tapi juga memerlukan tata cara atau aturan komunikasi agar tidak kacau (chaos) sehingga mencapai tujuan yang diharapkan.

Penulisan : jelaskan interkoneksi antar komponen (BUS)

Nama : Ning Sabar Mawarni

Npm : 15109970

Kelas : 4ka23

 Jelaskan interkoneksi antar komponen (BUS)


Penjelasan BUS ( Interkoneksi antar bagian utama komputer)

Bus merupakan lintasan komunikasi yang menghubungkan dua atau lebih perangkat komputer. Karakteristik penting sebuah bus adalah bahwa bus merupakan media transmisi yang dapat digunakan bersama. Sejumlah perangkat yang terhubung ke bus dan suatu sinyal yang ditransmisikan oleh salah satu perangkat ini dapat ditermia oleh salah satu perangkat yang terhubung ke bus. Bila dua buah perangkat melakukan transmisi dalam waktu yang bersamaan, maka sinyal-sinyalnya akan bertumpang tindih dan menjadi rusak. Dengan demikain, hanya sebuah perangkat saja yang akan berhasil melakukan transimi pada suatu saat tertentu.

Fungsi Bus : membawa data antar bagian utama komputer , data berupa data atau intruksi 


 Komponen utama komputer
·                     MAR : Tempat untuk menampung alamat memori berikutnya yang akan dibaca/ditulis
·                     MBR : Tempat untuk menampung data yang akan ditulis ke memori atau data yang akan dibaca dari memori
·                     I/O AR : Tempat untuk menampung alamat device yang akan dikontrol
·                     I/O BR : Digunakan untuk menampung data yang dipertukarkan antara device dengan CPU
·                     IR : Menyimpan Intruksi yang baru saja di ambil
·                     PC : Menyimpan alamat intruksi berikutnya
STRUKTUR BUS
Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung.
·                     Saluran Data : Saluran data memberikan lintasan bagi perpindahan data antara dua modul sistem. Saluran ini secara kolektif disebut bus data. Umumnya bus data terdiri dari 8, 16, 32 saluran, jumlah saluran diakitakan denang lebar bus data. Karena pada suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit, maka jumlah saluran menentukan jumlah bit yang dapat dipindahkan pada suatu saat. Lebar bus data merupakan faktor penting dalam menentukan kinerja sistem secara keseluruhan. Misalnya, bila bus data lebarnya 8 bit, dan setiap instruksi panjangnya 16 bit, maka CPU harus dua kali mengakses modul memori dalam setiap siklus instruksinya.
·                     Saluran Alamat : Saluran alamat digunakan untuk menandakan sumber atau tujuan data pada bus data. Misalnya, bila CPU akan membaca sebuah word data dari memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Selain itu, umumnya saluran alamat juga dipakai untuk mengalamati port-port input/outoput. Biasanya, bit-bit berorde lebih tinggi dipakai untuk memilih lokasi memori atau port I/O pada modul.
·                      Saluran Kontrol :Saluran kontrol digunakan untuk mengntrol akses ke saluran alamat dan penggunaan data dan saluran alamat. Karena data dan saluran alamat dipakai bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaannya. Sinyal-sinyal kontrol melakukan transmisi baik perintah maupun informasi pewaktuan diantara modul-modul sistem. Sinyal-sinyal pewaktuan menunjukkan validitas data dan informasi alamat. Sinyal-sinyal perintah mespesifikasikan operasi-operasi yang akan dibentuk. Umumnya saluran kontrol meliputi : memory write, memory read, I/O write, I/O read, transfer ACK, bus request, bus grant, interrupt request, interrupt ACK, clock, reset.
ELEMEN-ELEMEN RANCANGAN BUS
JENIS BUS
Saluran bus dapat dipisahkan menjadi dua tipe umum, yaitu dedicated dan multiplexed. Suatu saluran bus didicated secara permanen diberi sebuah fungsi atau subset fisik komponen-komponen komputer.
Sebagai contoh dedikasi fungsi adalah penggunaan alamat dedicated terpisah dan saluran data, yang merupakan suatu hal yang umum bagi bus. Namun, hal ini bukanlah hal yang penting. Misalnya, alamat dan informasi data dapat ditransmisikan melalui sejumlah salurah yang sama dengan menggunakan saluran address valid control. Pada awal pemindahan data, alamat ditempatkan pada bus dan address valid control diaktifkan. Pada saat ini, setiap modul memilki periode waktu tertentu untuk menyalin alamat dan menentukan apakah alamat tersebut merupakan modul beralamat. Kemudian alamat dihapus dari bus dan koneksi bus yang sama digunakan untuk transfer data pembacaan atau penulisan berikutnya. Metode penggunaan saluran yang sama untuk berbagai keperluan ini dikenal sebagai time multiplexing.
Keuntungan time multiplexing adalah memerlukan saluran yang lebih sedikit, yang menghemat ruang dan biaya. Kerugiannya adalah diperlukannya rangkaian yang lebih kompleks di dalam setiap modul. Terdapat juga penurunan kinerja yang cukup besar karena event-event tertentu yang menggunakan saluran secara bersama-sama tidak dapat berfungsi secara paralel.
Dedikasi fisik berkaitan dengan penggunaan multiple bus, yang masing-masing bus itu terhubung dengan hanya sebuah subset modul. Contoh yang umum adalah penggunaan bus I/O untuk menginterkoneksi seluruh modul I/O, kemudian bus ini dihubungkan dengan bus utama melalui sejenis modul adapter I/O. keuntungan yang utama dari dedikasi fisik adalah throughput yang tinggi, harena hanya terjadi kemacetan lalu lintas data yang kecil. Kerugiannya adalah meningkatnya ukuran dan biaya sistem.
METODE ARBITRASI
Di dalam semua sistem keculai sistem yang paling sederhana, lebih dari satu modul diperlukan untuk mengontrol bus. Misalnya, sebuah modul I/O mungkin diperlukan untuk membaca atau menulis secara langsung ke memori, dengan tanpa mengirimkan data ke CPU. Karena pada satu saat hanya sebuah unit yang akan berhasil mentransmisikan data melalui bus, maka diperlukan beberapa metodi arbitrasi. Bermacam-macam metode secara garis besarnya dapat digolongkan sebagi metode tersentraslisasi dan metode terdistribusi. Pada metode tersentralisasi, sebuah perangkat hardware, yang dikenal sebagai pengontrol bus atau arbitrer, bertanggung jawab atas alokasi waktu pada bus. Mungkin perangkat berbentuk modul atau bagian CPU yang terpisah. Pada metode terdistribusi, tidak terdapat pengontrol sentral. Melainkan, setiap modul terdiri dari access control logic dan modul-modul bekerja sama untuk memakai bus bersama-sama. Pada kedua metode arbitrasi, tujuannya adalah untuk menugaskan sebuah perangkat, baik CPU atau modul I/O, bertindak sebagai master. Kemudian master dapat memulai transfer data (misalnya, membaca atau menulis) dengan menggunakan perangkat-perangkat lainnya, yang bekerja sebagai slave bagi pertukaran data yang khusus ini.

TIMING
Timing berkaitan dengan bagaimana terjadinya event yang dikoordinasikan pada bus. Dengan timing yang synchronous, terjadinya event pada bus ditentukan oleh sebuah pewaktu (clock). Bus meliputi sebuah saluran, waktu tempat pewaktu mentrasmisikan rangkaian bilangan 1 dan 0 dalam durasi yang sama. Sebuah transmisi 1-0 dikenal sebagai siklus waktu atau siklus bus dan menentukan bersarnya slot waktu. Semua perangkat lainnya pada bus dapat membaca saluran waktu dan semua event dimulai pada awal siklus waktu.  Gambar di samping menujukkan diagram penentuan bagi operasi pembacaan sinkron. Sinyal-sinyal bus lainnya dapat berubah pada ujung muka sinyal waktu dengan diikuti sedikit reaksi delay. Sebagian besar event mengisi suatu siklus waktu. Di dalam contoh sederhanya ini, CPU mengeluarkan sinyal baca dan menempatkan alamat memori pada bus alamat. CPU juga mengeluarkan sinyal awal untuk menandai keberadaan alamat dan informasi kontrol pada bus. Modul memori mengetahui alamat itu, dan setelah delay 1 siklus menempatkan data dan sinyal balasan pada bus.
Sedangkan pada timing asinkron, terjadinya sebuah event pada bus mengikuti dan tergantung pada event sebelumnya. Dalam contoh gambar di atas, CPU menempatkan alamat dan membaca sinyal pada bus. Setelah berhenti untuk memberi kesempatan sinyal ini menjadi stabil, CPU mengeluarkan sinyal MSYN (master syn) yang menandakan keberadaan alamat yang valid dan sinyal kontrol. Modul memori memberikan respons dengan data dan sinyal SSYN (slave syn) yang menunjukkan respon.
Timing sinkron lebih mudah untuk diimplementasikan dan diuji. Namun timing ini kurang fleskibel dibandingkan dengan timing asinkron. Karena semua perangkat pada bus sinkron terkait dengan kelajuan pewaktu yang tetap, maka sistem tidak dapat memanfaatkan peningkata kinerja. Dengan menggunakan timing asinkron, campuran antara perangkat yang lamban dan cepat, baik dengan menggunakan teknologi lama maupun baru, dapat menggunakan bus secara bersama-sama.
LEBAR BUS
Lebar bus dinyatakan dengan satuan bit dan kecepatan bus dinyatakan dalam satuan MHz Lebar bus data dapat mempengaruhi kinerja sistem. Semakin lebar bus data, semakin besar bit yang dapat ditransferkan pada suatu saat. Lebar bus alamat mempunyai pengaruh pada kapasistas sitem. Semakin lebar bus alamat, semakin besar pula range lokasi yang dapat direferensi.
JENIS TRANSFER DATA
Suatu bus mendukung bermacam-macam transfer data. Semua bus mendukung transfer baca (master ke slave) dan transfer tulis (slave ke master). Pada semua multiplexed address/data bus, pertama-tama bus digunakan untuk menspesifikasikan alamat dan kemudian untuk melakukan transfer data. Untuk operasi baca, biasanya terdapat waktu tunggu pada saat data sedang diambil dari slave untuk ditaruh pasda bus. Baik bagi operasi baca maupun tulis, mungkin juga terdapt delay bila hal itu diperlukan untuk melalui arbitrasi agar mendapatkan kontrol  bus untuk sisa operasi (yaitu, mengambil alih bus untuk melakukan request baca atau tulis, kemudian mengambil alih lagi bus untuk membentuk operasi vaca atau tulis.
Pada alamat dedicated dan bus-bus data, alamat ditaruh ada bus alamat dan tetap berada di sana selama data tersimpan pada bus data. Bagi operasi tulis, master menaruh data pada bus data begitu alamat telah staabil dan slave telah mempunyai kesempatan untuk mengetahui alamatnya. Bagi operasi baca, slave menaruh data pada bus dan begitu slave mengetahui alamtnya dan telah mengambil data.
Terdapt pula beberapa kombinasi operasi yang diizinkan oleh sebagian bus. Suatu operasi baca-modifikasi-tulis merupakan sebuah oerasi baca yang diikuti oleh operasi tulis ke alamat yang sama. Alamat hanya di-broadcast satu kali saja pada awal operasi. Baiasanya urutan operasi secara keseluruhan tidak dapat dibagi-bagi untuk menjaga setiap akses ke element data oleh master-master bus lainnya. Tujuan utama dari kemampuan ini adalah untuk melindungi sumber daya memori yang dapat dipakai bersama di dalam sistem multiprogramming.
Operasi read-after-write merupakan operasi yang tidak dapat dibagi-bagi yang berisi operasi tulis yang diikuti oleh operasi baca dari alamat yang sama. Operasi baca dibentuk untuk tujuan pemeriksaan.
Sebagian sistem bus juga mendukung trasnfer data blok. Dalam hal ini, sebuah siklus alamat diikuti oleh n siklus data. Butir data pertama ditransfer ke almat tertentu atau ditransfer dari alamat tertentu. Butir-butir data lainnya ditransfer ke alamat berikutnya atau ditransfer dari alamat sebelumnya

sumber : www.risyana.wordpress.com